首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   143篇
  免费   2篇
  国内免费   2篇
测绘学   6篇
大气科学   4篇
地球物理   20篇
地质学   87篇
海洋学   2篇
天文学   25篇
自然地理   3篇
  2022年   1篇
  2020年   2篇
  2019年   2篇
  2018年   4篇
  2017年   6篇
  2016年   3篇
  2015年   4篇
  2014年   11篇
  2013年   7篇
  2012年   3篇
  2011年   9篇
  2010年   6篇
  2009年   9篇
  2008年   10篇
  2007年   10篇
  2006年   2篇
  2005年   3篇
  2004年   4篇
  2003年   5篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1993年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   2篇
  1985年   1篇
  1984年   2篇
  1983年   4篇
  1982年   6篇
  1981年   3篇
  1980年   3篇
  1979年   3篇
  1978年   3篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有147条查询结果,搜索用时 24 毫秒
21.
22.
Ground water recharge is assumed to occur primarily at raised bog crests in northern peatlands, which are globally significant terrestrial carbon reservoirs. We synoptically surveyed vertical profiles of peat pore water δ18O and δ2H from a range of bog and fen landforms across the Glacial Lake Agassiz Peatlands, northern Minnesota. Contrary to our expectations, we find that local‐scale recharge penetrates to not only the basal peat at topographically high bog crests but also transitional Sphagnum lawns and low‐lying fen water tracks. Surface landscape characteristics appear to control the isotopic composition of the deeper pore waters (depths ≥0.5 m), which are partitioned into discrete ranges of δ18O on the basis of landform type (mean ± standard deviation for bog crests = ?11.9 ± 0.4‰, lawns = ?10.6 ± 0.1‰, fen water tracks = ?8.8 ± 1.0‰). Fen water tracks have a shallow free‐water surface that is seasonally enriched by isotope fractionating evaporation, fingerprinting recharge to underlying pore waters at depths ≥3 m. Isotope mass balance calculations indicate on average 12% of the waters we sampled from the basal peat of the fen water tracks was lost to surface evaporation, which occurred prior to advection and dispersion into the underlying formation. These new data provide direct support for the hypothesis that methane production in deeper peat strata is fuelled by the downward transport of labile carbon substrates from the surface of northern peat basins. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
23.
24.
The total electron content (TEC) of the equatorial ionosphere is controlled by photochemical processes as well as the transport of the ionospheric plasma near the magnetic equator. The transport phenomenon is initiated by the vertical drift driven by the eastward electric field, which also drives the Equatorial Electrojet. The empirical relation between the Equatorial Electrojet and the anomaly component of the equatorial TEC has already been established. Taking this relation as a reference, a simplified physical model of the anomaly component of equatorial TEC is obtained as a function of Equatorial Electrojet. Influence of other factors like the solar incidence angle and the solar flux are also considered here and the extent of their influence are also investigated. This has been done using TEC data obtained from dual frequency GPS receivers during the low solar activity period of 2005. The derived model is based on the physics of the underlying fountain effect and matches with the observed empirical relation to a fair extent. Obtained results are found to corroborate with previous findings and these physical model values are found to have improved correlation with the observed data than the reference empirical relation. This establishes the conformity between the EEJ based ionospheric model and the physical phenomenon of the fountain effect.  相似文献   
25.
Prabir Dasgupta  Priyanka Manna 《Earth》2011,104(1-3):186-198
The grain-flow has so far been defined with reference to the distinctive sediment-support mechanism, the dispersive pressure. The role of sediment-support mechanism, however, is required in a multiphase flow to prevent the gravitational settling of the particles through the driving medium during the flow. In a single-phase flow of non-cohesive grains no such secondary mechanism is required to counteract the gravitational pull, the driving force of the flow. So the definition of grain-flow needs a critical revision. This, in turn, involves proper understanding of the grain-flow mechanism, so that the relation between the process and the product can be properly established. The most distinctive feature often demonstrated by a grain-flow deposit is the particle size segregation, which leads to the development of inverse grading. The available explanations for this phenomenon find theoretical constraints. In the present study an attempt was made to understand the mechanism of single-phase non-cohesive granular flow of different flow regime and the particle segregation pattern in the resultant deposit through laboratory simulation. The experimental observations revealed that no sustained granular flow sets in on a slope deviating much from the limiting value of the angle of repose of the granular material. A persistent simple shear flow develops on slopes of this critical value. Each of the grains rolls in response to simple shearing. If the shear stress attains a critical value, theoretically the larger grains can even climb up the adjacent smaller ones towards the down-slope direction. In reality, however, high angle climb is not very common. The larger grains preferably roll over the smaller grains when the common tangent becomes almost horizontal or makes a very low angle with the direction of flow, and by this process gradually reaches the upper surface of the flow causing the development of inverse grading. The upper surface of the resultant deposit remains parallel to the sloping substratum. These properties readily distinguish this variety of granular flow from the other natural flows, and the flow may thus be assigned the distinct status of grain-flow.  相似文献   
26.
The plate margin features defining the Arabian Sea Triple Junction (ASTJ) are: the Aden Ridge (AR), Sheba Ridge (SR) with their intervening Alula-Fartak Transform (AFT), Carlsberg Ridge (CR) and Owen Fracture Zone (OFZ). Exact nature of ASTJ is presently debated: whether it is RRF (ridge-ridge-fault) or RRR (ridge-ridge-ridge) type. A revised seismicity map for ASTJ is given here using data for a period little more than a century. “Point density spatial statistical criterion” is applied to short-listed 742 earthquakes (mb ≥ 4.3), 10 numbers of spatio-temporal seismic clusters are identified for ASTJ and its arms. Relocated hypocentres help better constraining the cluster identification wherever such data exist. Seismic clusters actually diagnose the most intense zones of strain accumulation due to far field as well as the local stress operating at ASTJ. An earthquake swarm emanating from a prominent seismic cluster below SR provides an opportunity to investigate the pore pressure diffusion process (due to the active source) by means of “r-t plot”. Stress and faulting pattern in the active zones are deduced from 43 CMT solutions. While normal or lateral faulting is characteristic for these arms, an anomalous thrust earthquake occurs in the triangular ‘Wheatley Deep’ deformation zone proximal to ASTJ. The latter appears to have formed due to a shift of the deformational front from OFZ towards a transform that offsets SR. Though ASTJ is still in the process of evolution, available data favour that this RRF triple junction may eventually be converted to a more stable RRR type.  相似文献   
27.
Lamellidens marginalis (Molluska Bivalvia Eulamellibranchiata) is an important member of the freshwater ecosystem of India, which is sustained by filtering phytoplankton, bacteria and other particulate organic matter from the available water. Hemocytes, the circulating blood cells of bivalves, function as immunological effector cells under exposure to toxins and/or parasites. The hemocytes of Lamellidens marginalis have been identified morphologically and enumerated as being qualified for use as a biomarker to analyze the threat of freshwater contamination by sublethal concentrations of sodium arsenite, a natural pollutant of freshwater ecosystems. Diverse subpopulations of hemocytes were identified as blast‐like cells, granulocytes, agranulocytes, hyalinocytes and asterocytes. Supression in the total count of hemocytes and blast‐like cells was recorded under the exposure of all the concentrations of sodium arsenite tested. Sodium arsenite elevated the relative density of granulocytes, hyalinocytes, and asterocytes. Partial restoration of the total count of the hemocytes was recorded after the post‐treated animals were maintained in arsenic‐free water for periods of 15 and 30 days. The data predict a shift in the immunological parameters of this bivalve in arsenic contaminated environments. The present study is aimed at quantifying the arsenic induced stress in Lamellidens marginalis and establishing the hemocyte density as a biomarker of aquatic pollution in selected geographical regions of India.  相似文献   
28.
A suite of metapelitic, basic and quartzofeldspathic rocks intruded by enderbitic gneiss from the southernmost tip of the Eastern Ghats Belt, India, and metamorphosed at c. 750–800  °C, 6  kbar, were subjected to repeated ductile shear deformation, hydration, cooling and accompanying alkali metasomatism along narrow shear zones. Gedrite-bearing assemblages developed in the shear zones traversing metapelitic rocks. Interpretation of the reaction textures in an appropriate P–T  grid in the system FMASH, an isothermal–isobaric μ H2O– μ Na2O grid in the system NFMASH, and geothermobarometric data suggest a complex evolutionary history for the gedrite-bearing parageneses. Initially, gedrite-bearing assemblages were produced due to increase in μ Na2O at nearly constant but high μ H2O accompanying cooling. Gedrite was partially destabilized to orthopyroxene+albite due to progressively increasing μ Na2O. During further cooling and at increased μ H2O a second generation of gedrite appeared in the rocks.  相似文献   
29.
Dam-related downstream adjustments of riverbeds are normally investigated by analysing the trend in sediment supply and high flow events during the pre- and post-dam periods. The required data for existing predictive models is not measured at river gauges, which limits the application of these tools. We derived the frequency of sediment-transporting streamflow events (T*) and upstream sediment supply (S*) in the pre- and post-dam periods with widely available gauged records and predicted changes in the downstream riverbed by adapting an existing model. Ten gauging stations in the Godavari River Basin, India, located downstream of dams, were chosen as study sites. Annually surveyed cross-sections at each site validated the accuracy of the predicted dam-related downstream changes. Then, a regression equation (R2 = 0.75) was established between T*/S* (independent variable) and changes in the downstream bed elevation (dependent variable) for the Godavari Basin. We recommended that similar local empirical equations be formulated for larger river basins. Models of large-scale rainfall-runoff and sediment transport processes that can account for the influence of dams, such as the Soil & Water Assessment Tool, can be paired with the proposed regression equation to estimate dam-related downstream erosion and deposition with globally available data.  相似文献   
30.
Satellite detection of earthquake thermal infrared precursors in Iran   总被引:5,自引:1,他引:4  
Stress accumulated in rocks in tectonically active areas may manifest itself as electromagnetic radiation emission and temperature variation through a process of energy transformation. Land surface temperature (LST) changes before an impending earthquake can be detected with thermal infrared (TIR) sensors such as NOAA-AVHRR, Terra/Aqua-MODIS, etc. TIR anomalies produced by 10 recent earthquakes in Iran during the period of Jun 2002–Jun 2006 in the tectonically active belt have been studied using pre- and post-earthquake NOAA-AVHRR datasets. Data analysis revealed a transient TIR rise in LST ranging 2–13°C in and around epicentral areas. The thermal anomalies started developing about 1–10 days prior to the main event depending upon the magnitude and focal depth, and disappeared after the main shock. In the case of moderate earthquakes (<6 magnitude) a dual thermal peak instead of the single rise has been observed. This may lead us to understand that perhaps pre-event sporadic release of energy from stressed rocks leads to a reduction in magnitude of the main shock. This TIR temperature increment prior to an impending earthquake can be attributed to degassing from rocks under stress or to p-hole activation in the stressed rock volume and their further recombination at the rock–air interface. A precise correlation of LST maps of Bam and Zarand with InSAR-generated deformation maps also provides evidence that the thermal anomaly is a ground-related phenomenon, not an atmospheric one.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号